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In an w-dimensional crystal, an energy band is usually made of several branches which are connected with 
each other. Accordingly, the Bloch states of wave vector K which are eigenfunctions of a one-electron 
Hamiltonian H= — A + V and which belong to a given band (B, define a subspace S(K) of finite dimensional­
ity. For a large class of potentials, two properties concerning the subspaces S(K) which are associated with a 
fixed band (B have been proved for ^-dimensional crystals. (1) The projection operator P(K) on S(K) can 
be defined for complex values of K, and its matrix elements (r |P(K) |r'> are analytic in a strip of the com­
plex K space; this strip is centered on the real K space and is independent of r and r'. (2) The projection 
operator P=fdhKP(K) (integration on the Brillouin zone) has matrix elements ( r |P | r ' ) which decrease 
exponentially when the length | r—rr | goes to infinity. 

I. INTRODUCTION 

IN an insulating crystal, the electrons form a kind of 
bound state and it is generally recognized that, for 

this reason, a local disturbance has only short-range 
effects. This phenomenon appears even in the inde­
pendent-particle approximation. It comes from the fact 
that, in an ideal crystal, at zero temperature, the lower 
bands are completely filled, whereas the upper bands are 
empty. If a band is full, each Bloch state is occupied by 
an electron but we may say also that each Wannier 
function of this band is occupied by an electron. Kohn1 

has shown, for a linear crystal with a center of sym­
metry, that it is always possible to build properly 
localized Wannier functions by starting from Bloch 
waves which are analytic functions of the wave number 
K in a strip of the complex K plane containing the real 
axis; as a consequence, the corresponding Wannier func­
tions have exponentially decreasing tails. Thus, the 
electrons of an insulator can be considered as really 
localized; at least, this point of view which is common 
among chemists can be established for linear crystals. 

Here, we want to derive closely related properties of 
the energy bands but our proofs are also valid for 
^-dimensional crystals. As a direct generalization of 
Kohn's results presents special difficulties, the problem 
is not examined here. However, we plan to use our re­
sults later on, to show that in ^-dimensional crystals, it 
is often possible to build really localized Wannier func­
tions, i.e., functions which decrease exponentially at 
infinity. 

The motion of the electrons in an infinite crystal can 
be described in first approximation, by using a one-
electron Hamiltonian of the form H=— A+V. The 
eigenvalues of H form continuous bands and we consider 
here a given band (B. This band is simple or complex 
but, by definition, it does not touch any other band; 
it is isolated. The Bloch waves of wave vector K which 
belong to (B define a subspace S(K). For real values of K, 
this subspace can he characterized by the projection 
operator P(K) on S(K), which is a periodic function of 

1 W. Kohn, Phys. Rev. 115, 809 (1959). 

K. General conditions of regularity are assumed for the 
potential; they are used to show that P(K) can be 
defined for complex values of K= K'+iK" and that its 
matrix elements (r|P(K)|r r) are analytic with respect 
to K, in a strip of the complex K space; this domain is 
defined by an inequality of the form | K" | <A where A 
is a positive constant which depends on the band but 
not on r and r'. For linear crystals, this result is trivial; 
the operator P(K) can be expressed directly in terms of 
Bloch waves and Kohn has shown the existence, in 
linear crystals, of Bloch waves which are analytic in a 
strip of the complex K plane. However, our result is 
valid also, in ^-dimensional crystals, for simple or com­
plex bands. In this case, the Bloch waves may have 
branch points for real values of K and therefore, in 
general, they are not analytic in a strip defined by an 
inequality of the form | K" | <A. 

On the other hand, the operator P of projection on the 
space formed by the set of all the subspaces S(K) which 
belong to (B, is defined as an integral of P(K) on the 
Brillouin zone. It is shown that, when | r— r' | increases, 
the modulus of the matrix elements (r |P | r ' ) decreases 
faster than exp[— eA |r— r ' | ] , where e is any positive 
number smaller than one. This result is a direct con­
sequence of the analyticity of the matrix elements 
(r|P(K) |r') in the strip | K"| <A. It shows clearly the 
localization of the electrons in an insulator. 

In Sec. II, we prove the analyticity of the matrix 
elements (r|P(K)|r ') with respect to K and their con­
tinuity with respect to r and r'. Sections IIA, IIB, and 
IIC contain definitions and general remarks. Our as­
sumptions concerning the regularity of the potential V 
are given in Sec. IID. These requirements are not very 
restrictive: They are fulfilled for n = l by 8 potentials 
for n=3 by screened Coulomb potentials. In Sec. HE, 
we prove the uniform convergence of all the series which 
appear in the following. Section IIF forms the central 
part of the proof. An operator Q(K) proportional to 
P(K) is introduced and we prove the analyticity of this 
operator in a special representation, for a small domain 
of the K space. Finally, in Sec. IIG, we prove the 

A685 



A686 J A C Q U E S D E S C L O I Z E A U X 

analyticity of the matrix elements (r |P(K)|r ') in a 
larger domain | K"| <A, by using the results of Sees. 
HE and IIF. In Sec. I l l , it is shown that the matrix 
elements (r |P |r ' ) exist and decrease exponentially at 
infinity. Section IIIA contains definitions. A preliminary 
theorem is given in Sec. IIIB and the final result is 
obtained in Sec. IIIC. 

The results which are established here are certainly 
very general and, for instance, they should remain valid 
for spin-dependent Hamiltonians. But instead of con­
sidering here, all possible cases, it seemed better to 
treat more rigorously a restricted problem. For this 
reason, special attention has been paid to convergence 
problems which are essential for the validity of the 
proofs. However, if the reader is interested only by the 
general method, he may very well skip Sees. HE and 
IIF which deal with these problems. A few assumptions 
have been used in the proofs; they concern mainly the 
existence of bands and the completeness2 of the Hamil-
tonian H. 

II. DEFINITION AND ANALYTICITY PROPERTIES OF 
THE PROJECTION OPERATORS P(K) ASSO­

CIATED WITH AN ENERGY BAND (B 

A. Elementary Definition of P(K) for K Real 

In an ^-dimensional crystal, an energy band is usually 
made of several branches which are connected with each 
other. By definition, if two branches touch each other 
for a real value of the wave vector K, they are parts of 
the same band. The number of Bloch states of wave 
vector K which belong to a band (B is a characteristic 
constant d of the band; for a simple band d=l, for a 
complex band d>l (see Fig. 1). One-dimensional crys­
tals have (in general) only simple bands. 

The Bloch states of wave vector K can be labeled by 
an index /. It is convenient to assume that the energy 
E(l,K) associated with the Bloch state |<p(/,K)) is a 
nondecreasing function of the index I which is an integer 
running from a given value l0 to + co. By choosing l0 

properly, we can always label the states belonging to (B 
by values of / running from 1 to d. 

In an infinite crystal, the Dirac type of normalization 

FIG. 1. Simple band (a) and complex 
band (b) in an w-dimensional crystal. 

2 E. Titchmarsh has shown how to tackle some of these problems 
in his book Eigenfunctions Expansions Associated With Second-
Order Differential Equations (Clarendon Press, Oxford, 1958). 
However, the theorems which are given there are not very general; 
for instance, they are valid only for bounded potentials. 

must be used for the Bloch waves, 

<^(/ ,K)|^ / ,K0>=«ir« e(K-K0. (1) 

The distribution 5C(K-K') is denned by 

5c(K-K0 = E 5 ( K - K ' + u ) , (2) 
u 

where the summation is made for all the translations 
u of the reciprocal lattice. 

However, if we remain inside the subspace S(K) of 
wave vector K, we can perform the integrations on a 
unit cell only. In the following, this kind of normaliza­
tion is indicated by round brackets. We put 

\<p(l,K)) = v-^\<p(l,K)), (3) 

where v is the volume of the unit cell. Thus, the normali­
zation condition can be written also 

(<p(l,K)\<p(l',K'))=du'. (4) 

With these notations, we can define the operator 
P(K) for real values of K by 

l=d 

P ( K ) = Z k f t K ) ) ( , ( / , K ) | (5) 

In general, this operator is determined by its matrix 
elements, for instance, the functions (r|P(K)|r '), 

l=d 

<r|P(K)|r')=E(rk(/,K))(^,K)|r'). (6) 

The term (r| $>(/,K)) is just a Bloch function. As P(K) 
is a projection operator, it satisfies the relations 

P(K)P(K') = SC(K~K')P(K), 

(r\P(K)\r)dnt=vd. I 
(7) 

(8) 

In the last equation, the domain of integration is a unit 
cell of the crystal. 

B. Definition of P(K) for Complex Values of K 

Let us introduce new states by putting 

<r|/,K>=exp[-iK.r](r|^(/,K)>. 

These states are periodical and normalized 

(/,K|/',K) = 5 l ' l > 

(9) 

(10) 

They are solutions of equations obtained by transform­
ing the Schrodinger equation 

By putting 
^ | ^ ,K) )= J E(Z ,K) | ^ ,K) ) . 

H(K) = e- iKr#e iKr, 

we get immediately 

H(K)|/,K)=£(*,K)|/,K). 

(11) 

(12) 

(13) 
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Now, the Hamiltonian depends on K but the solutions 
must always be periodical; therefore for a given value 
of K, the spectrum of H(K) is discrete. If K is real, 
H(K) is Hermitian because transformation (12) is 
unitary in this case. On the contrary, if K is complex, 
this property does not remain true because 

H+(K) = H(K*). (14) 

When K is complex, Eq. (13) may still have solutions 
but the eigenstates are not orthogonal to each other 
anymore. However, by using Eq. (14), it is easy to 
show that the eigenstates of H(K) can be ortho-
normalized as follows: 

(*,K*|/',K) = *,r, (15) 

which is a generalization of Eq. (10). Thus, the states 
| <p(l,K)) can be defined, for complex values of K, by 
Eq. (9). We have in this case 

(^,K*)|^(/,K)) = ^ . (16) 

Kohn's work on one-dimensional crystals implies 
that for sufficiently small values of the imaginary part of 
K, it is possible to follow by continuity the eigenstates 
which belong to a band. A general derivation of this 
result (n> 1) is given in the following sections. 

Consequently, for K= K'+iK" and small values of 
| K"|, we can define P(K) by putting 

P(K)=Ek(/,K)><*>(/,K*)|, (17) 
1=1 

or more explicitly, 

<r |P(K)jr>£%xppK.(r-rO]<rKK)<;,K*|r '>. (18) 
1=1 

By looking at this expression, we see immediately that 
in spite of a formal appearance, P(K) depends really on 
K not on K*. In fact, it will be shown in the following 
sections that its matrix elements (r |P(K)|r ') are ana­
lytic functions of K. 

C. Remarks on the Analyticity Properties 
of Operators 

In the following sections, the analyticity properties 
of P(K) will be investigated but, first, we should like to 
make a few remarks about analytic operators. By 
definition, a matrix is analytic with respect to a complex 
variable z when all its matrix elements are analytic 
functions of z. Now, it is clear that any finite matrix 
which is analytic with respect to % is changed by a 
unitary transformation into another analytic matrix. 
Therefore, if an operator is defined in a space with a 
finite number of dimensions, it is analytic by definition 
if one of its matrix representations is analytic. However, 
a unitary transformation in an Hilbert space does not 
always conserve the analyticity of a matrix with respect 

to a variable z. The analyticity of an operator acting in 
such a space is defined for some kind of representation 
only. For instance, the projection operator P(K) for 
free electrons has matrix elements in the ordinary space 

<r|P(K)[r') = exppK.(r-r')], ( 1 9 ) 

which are obviously analytic with respect to K. How­
ever, the representation of P(K) in the reciprocal space 
is singular (the matrix elements contain 8 functions). 
In the following, the analyticity of P(K) will be proved 
in this restricted sense. Our aim is really to derive the 
analyticity of the matrix elements (r |P(K)|r '). 

On the other hand, the fact that all the functions 
which we consider are analytical functions of several 
variables does not bring additional difficulties: Hartog's 
theorem3 indicates that a function which is analytic 
with respect to each variable separately can be expanded 
in convergent Taylor series with respect to all variables 
and conversely. 

D. Nature of the Hamiltonian and 
Eigenfunctions 

The analyticity properties of the operator P(K) de­
pend, of course, of the nature of the Hamiltonian. Really 
general and rigorous proofs concerning these properties 
require great care. In fact, in a complete theory, the 
existence of energy bands should not be assumed a priori 
but proved for a certain class of Hamiltonians. 

On the other hand, in order to derive the analyticity 
properties of P(K), it is convenient to define this 
operator by expansions and several vector bases will be 
used. But, as we noticed above, the analyticity prop­
erties of an operator depend on its representation. The 
analyticity properties of the sum of a series depend not 
only on the analyticity properties of each term but also 
on the convergence of the series. Again, the convergence 
of our expansions depends on the nature of the 
Hamiltonian. 

Consequently, the Hamiltonian of the problem must 
belong to a well-defined type. In the following, for 
reasons of simplicity, it will be assumed that H has 
the form 

H=-A+V(r). (20) 

However, as the reader will realize, the method can 
be generalized and similar results could be derived for 
other types of Hamiltonian. 

The operator H(K) corresponding to this Hamil­
tonian is very simple; 

R(K) = e-iK*HeiKr==(--iV+'K)2+V. (21) 

The eigenfunctions (r|/,K) of H(K) are periodical and 
the square of their modulus is integrable; therefore, 
they are vectors of an Hilbert space which can be 

3 S. Bochner and W. T. Martin, Several Complex Variables (Prince­
ton University Press, Princeton, New Jersey, 1948). 
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spanned by the states | p) denned by 

<r|p) = expfa>r), (22) 

|p) = , - i / 2 | p ) ; (23) 

where the vectors p are reciprocal lattice vectors. The 
state | Z,K) can be defined by its matrix elements (p | Z,K) 
which are finite (at least for K real). The operator H(K) 
can be represented in this basis. The potential V(r) is 
assumed to be integrable, and, therefore, we can calcu­
late its Fourier series, 

V(r) = v-1 Z V(p) exp(ipr). (24) 

The coefficients V(p) are bounded: 

| V ( p ) | < o o . (25) 

The operator H(K) can be represented explicitly in the 
reciprocal space by its matrix elements 

(p|ff(K)|p) = ( p + K ) » 5 p . q + V ( p - q ) . (26) 

If the potential V(r) is smooth, its Fourier transform 
decreases rapidly for large values of p. More precisely, 
it will be assumed, in the following, that for an ^-dimen­
sional crystal, our potential V satisfies the condition 

^ - 1 | V ( p ) | < o o . (27) 

This condition is not very restrictive, it does not even 
imply the convergence of the series given by Eq. (24). 
In fact, for n— 1, a potential made of 8 functions satisfy 
Eqs. (24) and (26). On the other hand, for n>l, po­
tentials of the form e~ar/r obey also these conditions. 

Now, as we shall see, these bounding inequalities 
imply a kind of smoothness of the Bloch waves which is 
characterized by the asymptotic behavior of the co­
efficients (p|/ ,K). 

As the wave function must be normalized, we have 

(;,K*KK)̂ EO,K*|p)(p|/,K) = l. (28) 
P 

Therefore, the coefficients (p|/,K) must be bounded (at 
least for K real): 

| ( p | / , K ) | < o o . (29) 

Moreover, for large values of p, these coefficients de­
crease, and as a consequence of Eqs. (27) and (29), 
we have 

r " I (p I *,*)!<«• (30) 
This result can be derived by inspection of the 

Schrodinger equation which can be written 

[ £ ( / , K ) - ( K + p ) 2 ] ( p | / , K ) = E V(p -q ) (q | / ,K) . (31) 
q 

First, let us assume that the sum S P | ( p | ^ K ) | is con­
vergent. In this case, it is clear that the main contribu­
tion in the sum S q V(p—-q)(q|Z,K) comes from terms 
of small q; accordingly, the asymptotic properties of 
this sum depend on the behavior of V(p) for large values 

of p. If, in agreement with Eq. (26), V(p) contains terms 
of the order p-(n~V or less, then the sum is also of the 
order p-(n~lK Thus the coefficients (p|/,K) which ap­
pear in the left-hand side of the Schrodinger equation 
must be at most of the order ^-<w+l) at condition (29) 
holds. Conversely, if this condition is valid, then the 
sum ] L P | ( P | / , K ) | converges. Therefore it is consistent 
to assume that the coefficients (p|/,K) are at most of 
the order of p-^+v. I t is clear that such a result would 
be obtained by perturbation methods. 

In Appendix I, a more rigourous proof of this result 
is given for real values of K and more stringent bounding 
inequalities are obtained. 

| ( p | / , K ) | < C (C= 1 for K real), (32) 

^ ^ | ( p | / , K ) [ < C ( e , E o ) , (33) 

for E( / ,K)<E 0 and \K\<R. Here e is an arbitrary small 
positive value and C(e,E0) is a positive constant. The 
fact that C(e,E0) does not depend on K is very important 
and will be used extensively in the following. 

The proof remains valid for complex values of K in 
the regions where the modulus of the state | /, K) remains 
bounded. 

( / , K | / , K ) = E a , K | p ) ( p | / , K ) < C o , (34) 
P 

where C0 is a constant independent of K. However, for 
special values of K = K ' - H K " , the states |/,K) and 
|/,K*) may become orthogonal to each other. In this 
case, since the normalization condition (28) remains 
valid for this states, their modulus must become infinite. 
In the vicinity of a point of degeneracy defined by a real 
wave vector K0 (for instance, the center of the Brillouin 
zone for the complex band of Fig. 1) this situation may 
occur even for very small values of | K—K0 | . Strictly 
speaking, for such points P(K) cannot be defined by 
Eq. (17). However, it is not difficult to verify on ex­
amples, and we shall prove later on, that the matrix 
elements of P(K) remain quite regular at these anoma­
lous points because cancellations occur in the right-hand 
side of Eq. (17). Therefore, the difficulties introduced 
by this anomaly are spurious and in the following, we 
shall not pay much attention to them. 

E. Change of Representation and Problems 
of Convergence 

Until now, the states |/,K) have been defined by 
their components (p|/,K), but it is useful to consider 
also other representations. The components of |Z,K) in 
a new basis are given by series in terms of the coefficients 
(p|/ ,K). We shall examine here the convergence of such 
series. This question is important because, in order to 
derive the analytic properties of ( r |P (K) | r ' ) , we have 
to use several representations of P (K) ; therefore, it is 
necessary to prove that the series which are introduced 
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by a change of representation, are uniformly convergent 
with respect to K. 

For instance, the wave function (r|/,K) is given by 

<r|/,K> = tri lim £ <r|p)(p|Z,K) 
PO-*00 P<P0 

= «r1 lim £ exp(ip-r)(p|/,K). (35) 

PQ->CO p<PQ 

This series can be majorized, 

E | < r | p > ( p | / , K ) | < £ | ( p | / , K ) | . (36) 
P<P0 P<PQ 

According to Eq. (33) when p0 goes to infinity, the series 
of Eq. (36) converge uniformly with respect to K. There­
fore the series of Eq. (34) converges absolutely and 
uniformly with respect to K. The sum, which defines 
(r|/,K), is a continuous function of r. 

In the following, it will be convenient to use also as 
a basis, the set of eigenstates of H(K) which correspond 
to a given real value Ko. The reasons of such a choice 
will become clear in the next section. It is assumed that 
this set of states is complete; this condition can be 
written explicitly, 

E(p|mKo)(mKo|q) = (p|q) = 5pq. (37) 
m 

Now the component (p|/,K) can be expressed in terms 
of the coefficients (wK0|/,K) by a formal series, 

(PI / ,K)=E(p | wKo)(mKo | Z,K). (38) 
m 

The terms (mKQ\l,K) can be defined explicitly by 

(mKo| J,K) = E(wK01 q)(q| wK0), (39) 
q 

and according to Eqs. (32) and (33), these Hermitian 
products exist and are bounded. 

Our purpose is to show that the formal series (38) 
converges to (p|/,K) uniformly. This task is performed 
in Appendix V (at least for real values of K). A study of 
the convergence of the formal series (38) shows that the 
sum of the series is (p|/,K). Moreover, it is proved that 
the series converges to (p|/,K) uniformly with respect 
to K. This statement can be expressed more explicitly. 
We say that it is possible to associate with each positive 
number e, a finite number Eo(e) possessing the following 
properties: (1) Eo(e) is independent of K [but E(m,K) 
is assumed to be bounded]. (2) For any value E bigger 
than Eo(e), we have 

|(p|/,K)— L (p|m,K0)(m,Ko|/,K)|<€. (40) 
£(w,Ko) <E 

E>Eo(e) 

This important result will be used in Sec. IIG to derive 
the analyticity properties of the matrix elements 
<r|P(K)|r'>. 

F. Definition and Analyticity of the Matrix 
Elements (m,K0| Q(K) |m',K0) 

Our aim is to redefine the operator P(K) of a band (B 
for complex values K= K'+iK" and to show that its 
matrix elements (r | P(K) | r') are analytic functions of K 
in a region of the complex K space, defined by an in­
equality of the form |K"|<^4; here, A is a positive 
constant independent of K, r, and r'. However, these 
properties are difficult to establish directly. 

It is convenient to introduce an auxiliary operator 
Q(K). This operator is defined rigorously in the follow­
ing and turns out to be 

C(K)=£| / ,K)( / ,K*| . (41) 

In the space of the periodical functions and for real 
values of K, Q(K) is an ordinary projection operator. 
This operator is very closely related to P(K) since ac­
cording to Eqs. (17) and (2), we have 

<r|P(K)|r'> 

= vexp[iK(t-i')Jr\Q(K)\r') 

= exppK(r-r ' ) ] £ <r|p>(p|g(K)|p')<p'|r'>. (42) 
P.P' 

Now let Ko be a real value of K; the states |w,K0) 
which are eigenstates of H(KQ) form an orthogonal basis 
of the space of the periodic functions. In this section, 
we want to prove the analyticity of Q(K) in this basis, 
for small values of (K—Ko). This result is derived by 
using the general properties of the Hamiltonian H. It is 
generalized in the next section in order to prove the 
analyticity of the matrix elements (r |P(K)|r ') in a 
strip of the complex K space. The problem is rather 
delicate because the validity of the proof depends very 
much on the nature of the Hamiltonian H. In particular, 
the matrix elements (w,K|Q(K)|w'K) and <r|P(K)r') 
are given by expansions and, for this reason, it is quite 
necessary to prove the uniform convergence of these 
series. Therefore, for the sake of simplicity, it is assumed 
that the Hamiltonian is of the form H=— A+V and 
that the potential satisfies the general conditions listed 
in Sec. IID. 

In the basis formed by the states | w,K0), #(K0) and 
<2(Ko) are diagonal. On the other hand, the states |/,K) 
are eigenstates of H(K) and therefore for small values 
of |K—Ko[, the operator [_H(K) — H(K0)2 can be con­
sidered as a perturbation. In fact, according to Eq. (21), 
we have 

iy(K)- i?(K 0 )=-2(K-Ko)iV+(K 2~Ko 2 ) . (43) 

In order to give a direct definition of Q(K) and to derive 
the analyticity properties of the matrix elements 
(m,K0|<2(K)|m',Ko), we introduce the resolvant 

P(EK) = l / ( £ - # ( K ) ) . (44) 
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C 

( . , . V — > 
V Eg,Kg) J E(t,K0) real axis 

FIG. 2. Contour c in the complex energy plane. The points 
which are inside the contour correspond to eigenvalues of H 
belonging to (B. The points which are outside are due to other 
bands. 

We consider K0 as fixed, and in the complex energy 
plane, we draw a closed contour c, in the following way: 
all the points which correspond to eigenvalues £(/,K0) 
belonging to (B(7= 1- • -d) lie inside the contour, all the 
points associated with the other eigenvalues £(7',K0) 
remain outside (see Fig. 2). We can define Q(K) for 
small real or complex values of (K—K0) by integrating 
R(E,K) on this contour 

1 r dE 
<2(K)^— . (45) 

For small values of (K—K0), this definition coincides 
with the definition given above by Eq. (35); this fact 
can be verified immediately, if we assume the continuity 
of the eigenvalues E(/,K) in the vicinity of K0. We have 

Q(K)|Z,K)=E(/,K)|Z,K), EG,K)G(B ( . 
= 0, E(/,K)C(B. ^ J 

These relations are direct consequences of Eq. (45) and 
are also completely equivalent to definition (41) because 
the states |/,K) are normalized by Eq. (15). In the real 
K space, it is, of course, necessary to assume the con­
tinuity of the eigenvalues E(/,K); otherwise it would be 
impossible to define energy bands. Thus, we know that 
for real values of K, the definition (41) of Q(K) must be 
valid. Therefore, for K real, the definition (42) of P(K) 
in terms of Q(K) coincides always with the elementary 
definition (5) of Sec. IIA, and this is just what we want. 
On the contrary, for complex values of K, we do not 
need any continuity assumptions; the analyticity prop­
erties of <2(K) remain defined by Eq. (42). 

Now, let us show that for small values of (K—K0) 
definition (45) is meaningful for complex values of K. 
[We do not assume the continuity of the eigenvalues 
£(Z,K).] The operator R(E,K) can be written as follows: 

*(E,K)= 
E-H(K0) 

1 
X . (47) 

l - C ^ K ) - ^ ^ ) ] ^ - ^ ^ ) ] - 1 

Thus, R(E,K) can be expanded in a formal way in terms 
of the operator [ ^ ( K ) - F ( K 0 ) ] [ £ - ^ ( K 0 ) ] - 1 . As 
H(K) is a polynomial function of K, the analyticity 
properties of the matrix elements of R(E,K) can be 
derived easily by using this expansion, but first we have 
to show the validity of this operation for small values of 
(K— Ko). More precisely, we must prove that in a small 

domain of the complex K space around the point 
Ko, the upper bound of the modulus of the operator 
lH(K)~H(Ko)XE-H(K0)J-1 remains smaller than 
one. 

Neither H(K0) nor (iv) which appear in [#(K) 
— H(K0)2

 a r e bounded operators. However, the operator 
(iv) is bounded with respect to H(K0). More explicitly, 
we show in Appendix III that for any periodic normal-
izable state 

( / | - A | / ) < ^ ( / | H ( K o ) | / ) + 5 ( / | / ) , (48) 

where A and B are positive constants independent of 
| / ) . We may write, also, 

( / | - A | / ) < ^ | ( / | [ E - i 7 ( K „ ) ] | / ) + ( / | / ) , (49) 

where E is the affix of any point of the contour c. The 
coefficients A and c are positive constants which depend 
only on K0 and c. 

Now let \g) be an arbitrary state. We can define 
another state | / ) by putting 

| / ) = [£-#(K„)]-Mg). (50) 

In general, the operator [E~H(K^)~]~1 is not Hermitian 
but its eigenvectors are orthogonal. On Fig. 2, it appears 
immediately that the affix E of any point of the contour 
c always satisfies the inequality 

| £ - £ ( / , K 0 ) | > L ; (51) 

where L is the isolation length of the contour. Accord­
ingly, the state | / ) introduced above satisfies the 
condition 

(f\f)=(g\LE*-3(Ko)Tl 

XLE-H(Ko)Tl\g)<L-*(g\g). (52) 

Therefore, if E belongs to the contour, the state | / ) 
exists and Eq. (49) can be applied: 

| (g\ ZE*-H(K0)TK-A)£E-H(Ko)^\g) 
<A\(g\lE*-H(Kon-i\g)\ 

+C(g | [E*-F(Ko)]-1[£-ff(K„)]-i | g) 
<(AL-i+BL-*)(g\g). (53) 

On the other hand, any operator U satisfies the in­
equality 

K / | U | / ) | 2 < ( / | / ) ( / | U t U | / ) , (54) 

which is a trivial consequence of the fact that for any 
complex constant vector 3i, we have 

( / | (Ut+**)(U+*) | / )>0. (55) 
By putting 

D=(*A)C£-H(Ko)] (56) 

in Eq. (54) and by using Eq. (53), we get 

\(g\WLE-H(Ec)3-i\g)<D(g\g), (57) 

where D is a constant independent of E. Finally, we 
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obtain the majorization [see Eq. (43)] 

| (g| [ff(K)-H(Ko)][£-ff(Ko)]-Mg) I 
<[2Z?|K-K 0 |+L-MK'-Ko 2 | ] (g |g) . (58) 

If C(Ko) is small enough, the condition 

|K-Ko|<C(K 0 ) (59) 
implies 

\(l>\tH(K)-H(Ko)TE-H(K0)J-i\g)<(g\g) (60) 

for all values of E belonging to c. Therefore the resolvant 
R(E,K) can be expanded in an absolutely convergent 
series [see Eq. (47)] 

R(E,¥) = 
1 1 

E-H(K0) E-H(K<>) 

X[ff(K)-#(K 0 ) ] 
1 

E-H(K0) 
(61) 

As each term is an analytic function of K, R(E,K) is 
also an analytic function of K, the series can be inte­
grated on the contour c and as it converges uniformly 
with respect to K, the operator Q(K) which is propor­
tional to the sum of the integrated series is also an 
analytic operator. More precisely, we state that the 
matrix elements (m,K0\Q(K)\mf,Ko) are analytic func­
tions of K for |K—K0| <C(K0). 

In Sec. IID, we described anomalies connected with 
the fact that |/,K) and |/,K*) may become orthogonal 
to each other even for arbitrary small values of K". This 
phenomenon occurs in the neighborhood of the real 
branch points of the Bloch functions. We see now that 
these anomalies have no influence whatsoever on the 
analyticity properties of the matrix elements of <2(K) 
in the basis formed by the states |w,K0). 

G. Analyticity of the Matrix Elements 
<r|P(K)|r'> 

The operator P(K) is given in terms of Q(K) by Eq. 
(42) and the analyticity of Q(K) for |K—K0| <C(K0) in 
the basis of the states |m,K0) can be used now to prove 
the analyticity of the matrix elements (r | P(K) | r'). But, 
for this purpose, Q(K) must be expressed in other 
representations. 

The matrix elements (p|<3(K)|p/) can be defined by 

(P|(?(K)|P')= lim E E (p|«,Ko) 
£-+«> E(m,Ko)^E E(m'tKo)^E 

X(m,Ko |e (K)KKo)«K 0 | pO (62) 

(sum over m and m'). Each term of this series is analytic 
with respect to K. Therefore the sum is also analytic for 
| K— Ko| <C(Ko), if the series converges uniformly with 
respect to K. But according to Eq. (50), (p|<2(K)|p') 
can be written in a more explicit way (at least for 

Kreal): 

(p|e(K)|pO=ZZE(pKK0) 
l m m' 

X KK 0 1 Z,K)(/,K* | m' ,Ko)«Ko | pO. (63) 

We proved in Sec. IID that the series giving (p|/,K) in 
terms of the components (w,Ko|/,K) [see Eq. (40)] 
converges to (p |/,K) uniformly with respect to K when 
E goes to infinity. Therefore, for real values of K, the 
double sum of Eq. (62) converges uniformly to the 
value of (p|Q(K)|p') which correspond to the ele­
mentary definition (41). The same method can be 
applied for complex values of K; however, it is not really 
valid for the anomalous points because, in this case, 
definition (41) becomes meaningless. However, the 
difficulty is not a very serious one; we saw before that 
the matrix elements (m}Ko\Q(K)\mf,K0) remain well 
defined and analytic at these points. In any case, we 
can define the matrix elements (p|(?(K)|p') without 
ambiguity by using Eq. (62). The nature of the con­
vergence of the series giving (p | Q(K) | p') depends on the 
behavior of high-energy terms and not on low-energy 
effects related to degeneracies. Therefore, we can assume 
safely that the double sum of Eq. (71) is uniformly 
convergent with respect to K for real or complex values 
of K. Thus, the matrix elements (p|<2(K)|p') must be 
analytic for |K—K0| <C(K0). 

The same method can be used to derive the analyticity 
of the matrix elements (r | Q(K) | r')in the domain defined 
by | K— Ko| <C(K0). These matrix elements must be 
defined by [see Eq. (22) and (23)] 

<r|Q(K)|0 = t r i l im £ L <r|*>(p|G(K)|p')<p'|r>. 
PO-* 0 0 P<PO p'<vo 

(64) 

Each term of this series is analytic with respect to K. 
Again we can write explicitly (r|Q(K)|r') in terms of 
the states |/,K) by replacing the operator Q(K) in the 
right-hand side of (64) by its expansion (41). In this 
way, we can show that the double series of Eq. (64) 
converges uniformly with respect to K. This result is 
obtained by comparison with Eq. (35) which gives the 
function (r|/,K) in terms of the components (p|/,K); in 
fact, we proved in Sec. HE that this series converges 
uniformly with respect to K when p0 goes to infinity. 
The matrix elements (r | Q(K) | r') are defined by a series 
which converges in the same way; therefore they are 
analytic with respect to K for ( K—K0| <C(K0). 

Now, we can extend the domain of analyticity of these 
matrix elements (r|<2(K)|r'). In the real K space, we 
consider a closed spherical domain containing the 
Brillouin zone and defined by | K| <R. Each point of 
this domain is determined by a value K0 of K and is the 
center of an analyticity sphere of radius C(K0). Borel-
Lebesgue theorem indicates that the whole domain can 
be covered by a finite number of these spheres. Therefore 
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the matrix elements ( r |Q(K) | r ' ) remain analytic in a 
domain denned by the equations | K' | < R, \ K" \ < A 
where A is a positive constant. 

According to Eq.(51), the matrix elements (r (P(K) | r ') 
are analytic in the same domain. Furthermore, by defini­
tion, they are periodic with respect to K for real values 
of K; consequently they are also periodic for K complex 
and with the same periods. This result comes from the 
fact that two analytic functions which have the same 
values on a segment are identical. This final remark 
permits to formulate the fundamental result of this 
section: When the Hamiltonian H satisfies proper regu­
larity conditions, the matrix elements (r | P(K) | r ') of the 
operators P(K) associated with a given band (B, are 
analytic functions of K = K'+tK" in a domain denned 
by a condition | K" | <A where A is a positive constant 
which depends only on the characteristics of the band. 
In practice, the matrix elements ( r | P ( K ) | r ' ) remain 
analytic in larger domains; for instance, in tubes defined 
by inequalities of the form | K" | <A(K") where A(K") 
is a positive function of the direction of K". 

III. DEFINITION AND ASYMPTOTIC PROPERTIES OF 
THE OPERATOR ASSOCIATED WITH 

AN ENERGY BAND P 

A. Definition of P 

By definition, P is the operator of projection on the 
set of all the eigenstates which belong to a band (B. I t 
can be expressed as an integral of P(K) on the Brillouin 
zone 

< r | P | r ' ) = f ^ K ( r | P ( K ) | r ' > . (65) 
JB.Z. 

As the matrix elements ( r | P ( K ) | r ' ) are analytic with 
respect to K for real values of K and in the neighbor­
hood, the matrix elements ( r | P | r') are well defined and 
when the potential V fulfill the requirements of Sec. I I D , 
they are continuous with respect to r and r'. They are 
also periodic in the following sense: 

< r + t | P | r / + t ) = ( r | P | r / ) . (66) 

Here t is a translation of the crystal. On the other hand, 
the fact that P is a projection operator appears clearly 
in the identity 

P2=P, (67) 

which is a direct consequence of Eq. (7). 
Our aim is to show that the matrix elements (r | P | r') 

decrease exponentially when |r—r' | goes to infinity. 
This behavior is directly related to the localizability 
properties of the electrons in insulators; this correlation 
is, in fact, the reason of our interest in this matter and 
can be demonstrated easily. For instance, if the space 
of the eigenfunctions of H which belong to (B can be 
spanned4 by a set of Wannier functions (r|Afy), it is 

4 This question has been discussed previously. J. des Cloizeaux, 
Phys. Rev. 129, 554 (1963). 

possible to express P in the form 

< r ! P | r ' ) = £ < r | J ^ > a f y | r ' > . (68) 
M,j 

Here the points M are the nodes of a lattice; the index j 
is used to label the Wannier function which are associ­
ated with the same site M. We see immediately, in this 
case, that, if the modulus of the Wannier functions de­
crease exponentially at infinity, the same property re­
mains true for the matrix elements ( r | P | r ' ) when r or 
r' goes to infinity. 

In fact, the asymptotic properties of the matrix 
elements ( r | P | r ' ) can be related directly to the analy-
ticity of P(K) in a strip of the complex K plane, but to 
show this connection, we need a theorem which is given 
in the next section. 

B. Analyticity of Periodic Functions and 
Asymptotic Properties of Their 

Fourier Coefficients 

The following theorem appears under different forms 
in the literature. Its proof which is very simple is given 
here for the sake of completeness. 

Theorem: Let / (K) be an ^-periodical function of 
the ^-dimensional complex vector K = K ' - H K " , ad­
mitting real vectors Ky (j^l'-n) as periods. Thus 
/(K+Ky)==/(K). On the other hand, let t be the trans­
lation vectors of the reciprocal lattice. This lattice is de­
fined by the reciprocal vectors U (1= 1 • • • n) and we have 

Kyti=2ir5yi, (69) 

t = Z viU (vi = integer). (70) 
i 

Then, if / (K) is an analytic function of K in a domain 
defined by | K" | <A, it can be expanded in a convergent 
Fourier series in this domain: 

/ (K) = E ^ K t g ( t ) , (71) 
t 

and the Fourier coefficients g(i) satisfy the condition 

]hmetAtg(t) = 0. (72) 

Conversely, if the coefficients g(t) of a Fourier series 
have this asymptotic behavior, the series converges in 
the region | K' | <A and its sum is an analytic function 
of K in this domain. 

Proof: As / (K) is analytic in the domain | K"| <A, 
it can be expanded in Fourier series for K real. 

/ ( K ) = E e ^ ( t ) . (73) 
t 

For | K " | < v 4 , we can make an analytic continuation 
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of this formula. We have 

/ (K'+iK") = X>iK'*-K"*g(t). (74) 
t 

We consider here /(K'+iK") as a periodical function 
of K'; the Fourier coefficients of this function are 
^~Kmg(X). But the function f(Kf+iK") is an analytic 
function of Kf for real values of K'. Therefore, according 
to a well-known theorem, the coefficients go to zero 
when |t| becomes infinite. By putting 

K"=-eAt (0<€<1) (2=t / | t | ) , (75) 

we get immediately 
lime*Atg(t) = 0. (76) 

Conversely, if this relation is valid for any value of e 
smaller than one, the Fourier series which is built with 
the coefficients g(i) converges uniformly in any domain 
I K" | < eA with 0< e< 1. Therefore, the sum of the series 
defines a function /(K) which is analytic in the domain 
\K"\A. 

Remark: The preceding results can be generalized 
without difficulty. For instance, we can assume that 
/(K) is analytic in a domain 2D defined by | K" | <A (it") 
where A(&") is a positive function of the direction of 
K". Let B(f) be the upper limit of the scalar products 
(K"-f) when K" belongs to £). Then it is trivial to 
show that 

limexp[>B(2)]g(t) = *->o 
= 0. (77) 

Conversely, if this relation holds for the coefficients of a 
Fourier series, the series defines a function /(K) which 
is analytic in the domain 3D. 

C. Asymptotic Properties of the Matrix 
Elements <r|P|r'> 

The analyticity of the matrix elements (r | P(K) | r') in 
a domain given by an inequality of the form | K" | <A, 
has been proved in Sec. II, for a large class of Hamil-
tonians. This result can be used now to derive, with the 
help of the preceding theorem, the asymptotic prop­
erties of the matrix elements (r |P | r ' ) . More precisely, 
it will be shown that when r and r' remain fixed, we have: 

l i m ^ ( r | P | r ' + t > = 0. (78) 

Definition (65) implies: 

<r|P|r '+t>= f <KK<r|P(K)|r'+t>. (79) 
JB.Z. 

But P(K) can be expressed in terms of Bloch waves as 
in Eq. (5). By definition 

(t+t\<p(l,K))=e™(i\<p(l,K)), (80) 

therefore, we have also 

<r |P(K)|r ,+t)=e-K t(r |P(K)|r r) . (81) 

By using this result in Eq. (79), we get 

<r|P|r '+t>= f ^Ke-'Kt<r|^(K)|r '>. (82) 
JB.Z. 

On the other hand, as the matrix elements (r(P(K) | r') 
are analytic with respect to K and periodic, they can be 
expanded in convergent Fourier series. The periods are 
the vectors which define the reciprocal lattice. Thus, the 
terms of the series are of the form eiKt. Equation (91) 
shows immediately that the terms (r jP | r '+t) are pro­
portional to the Fourier coefficients. Finally, we may 
write 

<r]P(K)|r/> = Q"1E«'Kt<r|-P|r ,+t>, (83) 
t 

where 12 is the volume of the Brillouin zone. 
Now, we can apply the theorem of Sec. II. We see 

immediately that the property (78) is a direct conse­
quence of the analyticity of (r |P(K)|r ') in the domain 
| K " [ < 4 . The remark of Sec. IIB shows that this 
property can be generalized, if the matrix elements 
(r | P(K) | r') remain analytic in a strip of the complex K 
plane defined by an inequality of the form | K" | < A (K") 
where A (it") is a positive function of the direction of K". 

IV. CONCLUSION 

In the previous sections, general assumptions con­
cerning the regularity of a one-electron Hamiltonian 
E— T+V and its completeness have been used to show 
that the projection operator P(K) which can be 
associated with a given band (B has matrix elements 
(r|P(K)[r') which are continuous with respect to r and 
r' and analytic with respect to K in a strip of the com­
plex K space defined by | K" | <A, where A is a positive 
constant. On the other hand, as a consequence of this 
analyticity property, it was shown that for large values 
of |r— r'|, the matrix elements ( r |P | r ' ) have ex­
ponential tails 

lim exp[>4|r-r ' | ]<r |P | r ' ) = 0 0 < e < l . (84) 
| r—r' | -*oo 

In the case of insulators, a physical interpretation of 
this result can be given in terms of electronic correlation 
functions at zero temperature. For each value of K, we 
can introduce the operator Pi(K) which is the sum of all 
the operators P(K) which correspond to filled bands. 
For real values of K, this operator is analytic. The 
domain of analyticity of P(K) must be the same, in 
general, as the domain of analyticity of the operator 
P(K) related to the valence band; it may be even larger. 
Thus, the corresponding operator PL satisfies a relation 
of the form (84). Its matrix elements are just equal to 
the one-electron correlation function as it is easy to 
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verify 
( r |Px | r ' )=(co |C+C r - | w )^G(r ; r

/ ) . (85) 

Here |o>) is the ground state obtained by filling all the 
lower bands. C r

+ and Cr are the creation and annihilation 
operators of an electron at the point of coordinate r. 

Thus, in the independent-electron approximation, the 
one-particle correlation function G(r>r') decrease ex­
ponentially when the distance | r— rr j increases. This 
result remain probably valid also when there are inter­
actions. I t is likely to be true also for other correlation 
functions. These projection operators have the ad­
vantage of being completely independent of the phase 
factors of the Bloch waves. In general, difficulties are 
introduced by the determination of the individual 
phases of these waves. On the other hand, these phase 
factors seem devoid of any physical meaning. Ap­
parently, many problems of solid-state physics could be 
treated properly without introducing Bloch waves in a 
specific way, but, instead, by using projection operators 
which are more simple objects. I t is hoped that by 
emphasizing this fact, this study may help to the 
solution of these problems. 
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APPENDIX I 

Derivation of the bounding condition | p | n+l~e | (p | /, K) < C 
where C is a constant independent of K (for K real) 

In the reciprocal space, the Schrodinger equation can 
be written 

DE(/ ,K)-(K+p)2](p | / ,K) = E V(p-
< 1 

•q)(q|/,K). (AI.1) 

Let us consider the solutions which are associated 
with a given band (B. For these eigenstates, we have 

| £ ( / , K ) | < £ 0 , (AI.2) 

where E0 is a constant which depends on the band. We 
want to show that the corresponding coefficients (p | /, K) 
satisfy an inequality of the form 

^ - | ( p | / , K ) | < C , (AI.3) 

where C is a constant independent of K and I; n is the 
number of space coordinates and e an arbitrary positive 
constant. I t is clear that the asymptotic properties of 
(p|/,K) for large values of p depend on the behavior of 
the following sum: 

/ ^ ,K ,p ) = E V(p -q ) (q | / ,K) . (AI.4) 
p 

Let us derive first a weaker condition which implies 

the absolute convergence of F(p), 

f\(V\l,K)\<C. (AI.5) 

This condition can be established by showing that 
\F(l,K,j>) | has an upper bound independent of p and K. 
The sum \F(l,K,p) | can be considered as a scalar prod­
uct and Schwartz inequality can be applied: 

I W , p ) | = |ZV(p-q)(q|/,K)| 

W z W q ^ Z K q ' K K ) ! ^ . (AI.6) 
q q' 

The wave function is assumed to be normalized. There­
fore, if K is real, we have 

E|(q|*,K)|»=l. (AI.7) 

On the other hand, the sum X) I V(g) | 2 converges if 
the square of the potential is integrable and, for in­
stance, if we have 

| p | n + * | V ( p ) | 2 < ^ , (AI.8) 

since the vectors p are associated with the points of a 
lattice in the reciprocal space. For n>3, condition 
(AI.8) is weaker than the assumption of Eq. (26) which 
can be written 

|p | 2 " - 2 [V(p) | 2 <oo . (AI.9) 

For n=l and n=2, this latter condition is not sufficient 
to insure the convergence of the series X) | V(q) |2 . How­
ever, even in this case, we can find an upper bound for 
\F(l,K,p) | by assuming the uniform convergence of the 
mean value of the kinetic energy for the states under 
consideration 

Zf | (p [ ; ; i ) | kC" . (ALIO) 

This assumption is highly reasonable since the eigen­
values E(l,K) have an upper bound EQ. I t is proved 
rigorously for real in Appendix IV by using the results 
of Appendices I I and III . In this case, Schwartz in­
equality can be applied differently: 

|F(/,K,p)| = | £ V ( p - q ) ( q | / , K ) | 

< 
V ( p - q ) 

, E " rH(q'+amq'\l,K)\ 
L q (q+a)2 q' • ] • (ALII) 

where a is an arbitrary positive constant. 
According to (AI.7) 

E ( ? + « ) 2 | ( q | / , K ) | 2 

< 4 E(<?2+«2) | (q| /,K) 1 2<4(c"+o 2 ) . (AI.12) 
q 

On the other hand, if condition (AI.8) is realized, we can 
find for | V(q) | an upper bound of the form 

\V(q)\<A/(q"-i+B): (AI.13) 
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where A and B are positive constants. Consequently, 
we have 

| V ( p - q ) | 2 A2 

]T <]T 
* (q+a)2 q ( |p -q | n -H-£)*(<H-a) 2 

(AI.14) 

The sum in the right-hand side of this inequality con­
verges and for n= 1 and n=2, it is trivial to show that 
it has upper band independent of p. Therefore, condition 
(AI.5) is established for any value of n. 

For n=l, this condition (AI.5) implies Eq. (AI.3). 
Now, let us derive (AI.3) for n> 1. We assume that for a 
number 5 , (KS<n) the following condition holds for 
any real values of K: 

**|(p|/,K)|<r(s), (AI.15) 

where T(S) is a constant independent of K, and we 
want to show that a condition of this nature holds also 
if we replace S by ( 5 + 1 ) . Condition (AI.15) implies the 
absolute convergence of F(p) and we can try to majorize 
this sum. As we have 

I ( P U , K ) I < I , (AI.16) 

we can find an upper bound for |(p|Z,K)| by using 
(AI.15) 

| (p| *,K) | <C(S)/(f*+D(S)), (AI.17) 

where C(S) and D(S) are positive constants. For in­
stance, we may choose D (S) in an arbitrary way, and put 

c(s)=r(s)+z>(S). (AI.18) 

By using (AI.13) and (AI.18), we find an upper bound 
of | F ( p ) | : 

| F ( / , K , p ) l < E | V ( p - q ) | | ( q | / , K ) | 
q 

< £ AC(S)/(£\v-qi\n-1+BJiqs+D'3. (AI.19) 

For l<S<n, it is easy to see that the sum on the right-
hand side of (AI.19) converges and that the main con­
tributions to this sum come from regions where | q | is 
of the order of | p |. Therefore, for large values of p 

£ 
l 

mp-q|*-H-W+Z>CS)] 

If-
uJ [|P-

dnq 

.q]n-iTqs+D(S)J 
(AI.20) 

where Q is the volume of the Brillouin zone. But, we 
have also: 

/ 

dnq 

[ |p-qh-1+^][^+^(^)] 
dnq G(S) 

S pS-1 
< 

r dnq 

J I p - q l ^ 
(AI.21) 

where G(S) is a positive constant. Therefore, from 
Eqs. (AI.19), (AI.20), and (AI.21), we deduce 

ps-i\F(l,K,p)\<<p(S)y (AI.22) 

where <p(S) is a positive constant independent of / and 
K. Note that the whole argument breaks down if the 
condition l<S<n is not fulfilled; in this case, the sums 
cannot be replaced by convergent integrals. Now, 
Schrodinger Eq. (AI.l), Eq. (AI.4), and Eq. (AI.22) 
imply the existence of an inequality of the form 

# S + 1 | ( P U , K ) | < C ( 5 + 1 ) ( 1 < 5 ' < » ) . (AI.23) 

But Eq. (AI.5) tells us that Eq. (AI.15) holds for 
1 < 5 < 2 . According to (AI.23), it must hold also for 
1 < 5 < ^ + 1 . Therefore (AI.3) is proved also for n>\. 

APPENDIX II 

Proof of the bounding inequality 

\(f\V\f)\<e(f\-A\f)+C(e)(f\f) 
for any state | / ) having the same periodicity as V (e —arbi­
trary positive constant) 

Let V be a periodic potential and V(p) its Fourier 
coefficients 

F( r) = 2 ^ p r V ( p ) . (AII.l) 
p 

I t is assumed that these coefficients V(p) are bounded 
and satisfy Eq. (26) 

V(p )<°o , (AII.2) 

Pn~1\v(v)\<«>> (AII.3) 

In an equivalent way, these conditions imply the exist­
ence of two positive numbers A and B for which we have 

\V(v)\<A/{pn~l+B). (AII.4) 

Now let e be an arbitrary positive number and | / ) a 
normalized periodic state; we want to show that this 
state satisfies always an inequality of the form 

l ( / m / ) | < e ( / | - A | / ) + C ( a ) ( / | / ) , (AILS) 

where C(e) is a constant independent of | / ) . The func­
tion (r | / ) can be expanded in Fourier series 

<r|/H*-1/2E(q|/yqr, (AII.6) 

where v is the volume of the crystal cell. We have 

(/|/) = ZI(q|/)l2 , (AII.7) 
q 

( / | - A | / ) = E < Z 2 | ( q | / ) | 2 , (AII.8) 
q 

( / | F | / ) = E ( / | p ) ( q | / ) V ( p - q ) . (AII.9) 
pq 

The modulus of the mean value of V can be majorized 
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by using Schwartz inequality obtain 

l(/|F|/)|<E|V(p)|EI(/|p+q)[|(q|/)| 

<{E|V(p')(//+a)*| 
P' 

( / | # ( K ) | / ) > ( i - e W ) ( / | - A | / ) 

+IK*- ( 2 / e ' ) -C(e" ) ] ( / | / ) . (AIII.5) 
We put 

X E | ( p + q | / ) | 2 | ( q | / ) | 2 } 1 / 2 , (AIL10) A 
1 

B=-
1 r2 

-+C(e 4 (AIII.6) 

where a is an arbitrary positive constant which is intro­
duced in order to get convergent sums. In fact, accord­
ing to Eq. (AII.4), the sum £ p | V(p)| (p+a)~2 con­
verges to a constant value. On the other hand, we have 

L(^+a)2KP+q|/)|2|(q|/)l2 

pq 

= Z ( | p - q | 2 + f l 2 ) | ( p | / ) | 2 | ( q | / ) | 2 

P<1 

< £ ( 4 ^ + 4 g H - a 2 ) | ( p | / ) | 2 | ( q | / ) | 2 . (AII . l l ) 
pq 

Finally, by comparing (All. 10), (AII.7), (AII.8), and 
(AII . l l ) , we obtain: (a,p = positive constants) 

l ( / | F | / ) l 2 < ( / l / ) C « ( / | - A | / ) + 5 ( / | / ) ] . (AII.12) 

Let C(e) be a positive number for which we have 

C(e)>a/2e C>B. (AII.13) 

We verify immediately: 

\(f\V\f)\<e(f\-A\f)+C(e)(f\f). (AII.14) 

APPENDIX III 

Proof of the bounding inequality ( / | — A | / ) 
<A(f\H(K)\f)+B(f\f)for any periodic 
normalizable state \ f) (A and B are posi­

tive constants independent of | / ) . 

According to the definition of H(K) [see Eq. (21)], 
we have 

( / |Z7(K) | / ) = ( / | ( - * V + l W ) 

+ (J\V\f)>(f\(-A+K*)\f) 

- 2 | ( / | i K . v | / ) | - | ( / | F | / ) . (AIII.l) 

We can majorize the last two terms of this inequality. 
We write 

| ( / | - ; v | / ) | 2 < ( / | / ) ( / | - A | / ) . (AIII.2) 

This equation implies 

l ( / K v | / ) | < i e ' ( / | - A | / ) + ( l / e ' ) ( / | / ) , (AIII.3) 

where e is an arbitrary positive constant. 
On the other hand, we can use the results of Ap­

pendix II , 

\UWf)\< «"(/! - A| / ) + C ( e " ) ( / | / ) , (AIII.4) 

where e" is an arbitrary positive constant. Therefore, 
by using Eqs. (AIII.l) , (AIII.3), and (AIII.4), we 

l - e ' - e " l - e ' - e " 

and we choose small values of e and e" in order to have 

A>0. 
The final result is 

(f\-A\f)<A(f\H(K)\f)+B(f\f). (AIII.7) 

APPENDIX IV 

Upper bound of the sum E p21 (p | ^,K) |2. 

For an eigenstate |/,K) of B(K), the mean value of 
the kinetic energy is given by 

r( / ,K) = ( / , K | - A | / , K ) = E ^ I ( p | / , K ) | (AIV.l) 

We assume that K is real and we want to show that, if 
the state belongs to a given band (B, then the kinetic 
energy is bounded 

T ( / , K ) < r , (AIV.2) 

where T is a constant independent of K and /. The 
eigenvalues E(l,K) are given by 

E(/,K) = ( / ,K|H(K)|J ,K). (AIV.3) 

WTe assume that the energies E(l,K) associated with (B 
are bounded, 

E(l,K)<E0, (AIV.4) 

and we can use this fact by applying the results of 
Appendix I I I . 

T(/,K) = (Z ,K | -A | / ,K)<4( / ,K | f f (K) | / ,K) 
+B(l,K\l,K)=AE(l,R)+B. 

By taking account of (AIV.4), we obtain 

T(l9K)<AEo+B=T. (AIV.5) 

APPENDIX V 

Proof of the existence of a finite number Eo(e) inde­
pendent of K and such that for any value of E larger than 
JS0(e), we may write: 

|(p|/,K)— E ( p | m , K 0 ) K K o | / , K ) i < € 
E(m,Ko)<E 

[the sum is over m and it is assumed that E(l,K) remains 
bounded when K varies~]. 

The eigenfunctions of H(K0) form an orthonormal set 
of states \m,Ko) which can be defined by their com­
ponents (p|w,K0). This set is assumed to be complete. 
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In the following, we use simplified notations: 

£ . . . s l i m E •••, (AV.l) 
p 2>0->°o |p l<P0 

2 : - • - s l i m £ • (AV.2) 
m E-*oo E(m,Ko)<E 

Consequently, the orthonormalization conditions can 
be written 

L K K o | p)(p | m,K0) = bmm>, (AV.3) 
p 

and the completeness assumption is equivalent to the 
vp 1 Q t"i n n ^ 

E(p|»,Ko)(«,Ko|q) = 8P,. (AV.4) 
m 

On the other hand, we consider states |/,K) which 
are eigengunctions of H(K). The energies E(l,K) are 
assumed to be bounded. The states | Z,K) are determined 
by their components (p|Z,K) and, by definition, these 
components satisfy the conditions of Sec. IID and 
Appendix I, namely: 

|(p|J,K)|<C (AV.5) 

#n+i-, |(p | / ,K)| <C(i|) 1>77>0. (AV.6) 

We want to show that it is possible to associate with 
each arbitrary positive number e a finite number Eo(e) 
independent of I and K possessing the following prop­
erties: for any number E bigger than Eo(e), we have 

|(p|Z,K)— E (p|m,Ko)(m,K0|/,K)|<6. (AV.7) 

E(m,K.Q)<E 

First, we can prove the weaker relation, 

( P I W = E ( P K K O ) ( W , K 0 | / , K ) . (AV.8) 

m 

By definition we have 

E(p|w,Ko)0,K0 | / ,K) 
m 

^Z(p|«,Ko)E(«,Ko|q)(q|/ ,K). (AV.9) 
m q 

By changing the order of summation, and by taking 
Eq. (AV.4) into account, we get 
E(p|m,Ko)KK0 | / ,K) 
m 

= E(q|/,K)Z(p|«,Ko)(«,Ko|q) 
q m 

=E5p q(qU,K)=(p|^K)- (AV.IO) 

q 

This is the result which we want to prove but we have to 

establish the validity of the change in the order of sum­
mation, by showing that the double sum on the right-
hand side of Eq. (AV.9) is absolutely convergent. By 
using the Schwartz inequality, we can write 

EI(p|«,Ko)| |(«,Ko|q)ll(qU,K)| 
mq 

<[ZIKK0 |q) |2(g+«)- ("+*> 
mq 

XZ I (p|w',Ko) 12ZI (q'|*,K) I V + « ) " + i ] 1 / 2 - (AV.ll) 
mf q ' 

Let us show that the terms which appear in the right-
hand side are bounded; here a is just an arbitrary posi­
tive constant which is introduced to insure the con­
vergence of the sums for small values of | q |, 

E | ( ^ , K 0 | q ) | 2 ^ + a ) - ^ ) 
wq 

= E ( r M ~ ( n + l ) = constant, (AV.12) 
q 

L | ( P K K 0 ) | 2 = 1 , (AV.13) 
m 

EKq|/,K)|V+*<;£>, (AV.14) 
q 

where D is a constant independent of K [see Eq. 
(AV.6)]. Thus, the double sum of Eq. (AV.ll) is 
bounded and for this reason converges. The double sum 
of Eq. (AV.9) converges absolutely and therefore the 
change in the order of the summations is valid. This 
remark completes the proof of Eq. (AV.7). 

Moreover, as E(l,K) remain bounded, by definition, 
it is easy to show that the convergence of the sum which 
appears in Eq. (AV.8) is uniform with respect to K. 
More precisely, we have to establish the validity of 
Eq. (AV.7). This result can be obtained by majorizing 
the rest of the series which appears in this inequality; 
it is sufficient to prove 

E |(p[w,K0)| 
q,E(m,Ko)>Eo(e) 

X | K K 0 | q ) | | ( q | / , K ) | < € . (AV.15) 

Schwartz inequality can be used as above. The term 
(AV.14) is the only one which contains K and its upper 
bound is independent of K. In the other series (AV.12) 
and (AV.13), the summations are restricted to the terms 
for which we have E(w,K0)>E0; the corresponding 
sums converges to zero when Eo becomes infinite. There­
fore, it is always possible to find a number jE0(e) for 
which (AV.15) is satisfied. Thus the condition E>Eo(e) 
implies the validity of (AV.7). 


